Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells

Nature Communications Volume: 2 Published: 2011

H2-air polymer-electrolyte-membrane fuel cells are electrochemical power generators with potential vehicle propulsion applications. To help reduce their cost and encourage widespread use, research has focused on replacing the expensive Pt-based electrocatalysts in polymer-electrolyte-membrane fuel cells with a lower-cost alternative. Fe-based cathode catalysts are promising contenders, but their power density has been low compared with Pt-based cathodes, largely due to poor mass-transport properties. Here we report an iron-acetate/phenanthroline/zeolitic-imidazolate-framework-derived electrocatalyst with increased volumetric activity and enhanced mass-transport properties. The zeolitic-imidazolate-framework serves as a microporous host for phenanthrolineand ferrous acetate to form a catalyst precursor that is subsequently heat treated. A cathode made with the best electrocatalyst from this work, tested in H2-O2, has a power density of 0.75 W cm−2 at 0.6 V, a meaningful voltage for polymer-electrolyte-membrane fuel cells operation, comparable with that of a commercial Pt-based cathode tested under identical conditions.